ATMega128 트레이닝 키트 메뉴얼 (Model: KT-M128 V01) V 1.0

New Technology Company

http://www.NewTC.co.kr

2007-01-05

목 차

1 KT-M128 트레이닝 키트 소개

- 1.1 KT-M128 트레이닝 키트 소개
- 1.2 KT-M128 트레이닝 키트 사양
- 1.3 KT-M128 트레이닝 키트 구성품
- 1.4 H/W 구성도
- 2 KT-M128 트레이닝 키트 활용
 - 2.1 실습 구성
 - 2.2 프로젝트 구성
- 3 프로그래밍 가이드
 - 3.1 ICC AVR C 컴파일러의 특징
 - 3.2 프로그램 다운로드 방법
- 4 Epilog
 - 4.1 기술지원 홈페이지

1. KT-M128 트레이닝 키트 소개

1.1 KT-M128 트레이닝 키트 소개

AVR ATMega128 MCU를 사용하는 트레이닝 키트 입니다.

ATMega128은 내부에 롬(ROM)과 램(RAM)을 내장하고 내부 장 치로 AD Converter를 내장하고 있어 복잡한 회로 구성 없이 시스 템을 설계할 수 있습니다.

또한 ISP (In System Programming)를 지원하여 개인이 값비싼 장 비 없이도 개발할 수 있습니다.

본 제품은 마이크로 컨트롤러를 처음 접하시는 분들이 마이크 로 컨트롤러에 대한 개념을 잡고 기본적인 하드웨어를 이해하고 실습할 수 있도록 제작되었습니다.

한 학기 분량의 강좌를 진행 할 수 있도록 실습 강좌를 수록하 였고 과제 이후 프로젝트를 통하여 실습을 할 수 있도록 구성되 어 있습니다.

그림 1. KT-M128 "ATMega128 트레이닝 키트"

1.2 KT-M128 트레이닝 키트 사양

- ◆ ATMEL 사의 AVR 마이크로 컨트롤러 ATMega128 사용
- ♦ Display
 - Text LCD (Graphic LCD 사용 가능)
 - 10X10 Dot Matrix
 - 4Digit 7-Segment
- ◆ 모터 컨트롤러 내장
 - Stepping Motor 컨트롤러 2ea
 - 소용량 DC Motor 컨트롤러 2ea
 - RC 서보모터 8ea 연결 가능

◆ 센서

- 적외선 센서
- 온도 센서
- 조도센서
- ◆ 입출력 장치
 - 스위치 8ea
 - LED 8ea
 - RS-232 통신
- ◆ 기타 장치
 - RTC DS1307 내장
 - 스피커
- ◆ 전원 보호 회로 내장
- ◆ 보드 사이즈 200 * 140

1.3 KT-M128 트레이닝 키트 구성품

모델명	구성품
KT-M128	트레이닝 보드,ISP 케이블, 아답타
KT-M128-LT	트레이닝 보드,ISP 케이블, 아답타 스테핑모터 2EA, 센서보드, 라인트레이서바디
KT-M128-M	트레이닝 보드,ISP 케이블, 아답타 스테핑모터,DC 모터, 서보 모터

1.4 H/W 구성도

그림 2. KT-M128 H/W 구성도

그림 3. KT-M128-LT의 센서보드, 스테핑모터 연결

1.5 KT-M128 트레이닝 키트의 내부 장치

• Text LCD

7	6	5	4	3	2	1	0
Data[7]	Data[6]	Data[5]	Data[4]	Data[3]	Data[2]	Data[1]	Data[0]

LCD Data 출력 메모리 번지 : 0x8000 (Write 전용)

LCD Control 출력 메모리 번지 : 0x8001 (Write 전용)

7	6	5	4	3	2	1	0
					Enable	R/W	RS

Enable Enable signal for LCD

R/W Read/write selection (H:Read,L:Write)

RS Register selection (H:Data, L:Instruction)

♦ Seven-Segment

Seven-Segment Data 출력 메모리 번지 : 0x8002 (Write 전용)

7	6	5	4	3	2	1	0
Data[7]	Data[6]	Data[5]	Data[4]	Data[3]	Data[2]	Data[1]	Data[0]
Data[7] S	even Segn	nent – A Se	gment		а	
Data[6] S	even Segn	nent – B Se	gment			
Data[5] S	even Segn	nent – C Se	gment	f		b
Data[-	[4] Seven Segment – D Segment			egment			
Data[3] S	even Segn	nent – E Se	gment			~
Data[2] S	even Segn	nent – F Se	gment	е		c
Data[1] S	even Segn	nent – G Se	egment		<u> </u>	db
Data[0] S	even Segn	nent – Dot			d	P

Seven-Segment Digit 출력 메모리 번지 : 0x8003 (Write 전용)

	7	6	5	4	3	2	1	0
					Digit[3]	Digit[2]	Digit[1]	Digit[0]
Digit[n] n 번째 자릿수 Enable (H:Disable, L:Enable)								

Т

◆ 도트 메트릭스

도트 메트릭스 셀렉트(하위) 출력 메모리 번지 : 0x8004(Write 전용)

	7	6	5	4	3	2	1	0				
	Sel[7]	Sel[6]	Sel[5]	Sel[4]	Sel[3]	Sel[2]	Sel[1]	Sel[0]				
5 -	도트 메트릭스 셀렉트(상위) 출력 메모리 번지 :0x8005(Write 전용)											
	7	6	5	4	3	2	1	0				
							Sel[9]	Sel[8]				

Sel[n] 도트메트릭스 n 번째 줄 선택 (H:Enable, L:Disable)

도트 메트릭스 데이터(하위) 출력 메모리 번지 : 0x8006 (Write 전용)

	7	6	5	4	3	2	1	0			
	Data[7]	Data[6]	Data[5]	Data[4]	Data[3]	Data[2]	Data[1]	Data[0]			
_											

도트 메트릭스 데이터(상위) 출력 메모리 번지 : 0x8007 (Write 전용)

Т

7	6	5	4	3	2	1	0
						Data[9]	Data[8]
	[] [니 키즈이		(11:0-1)	Ott)	

Data[n] 도트메트릭스 한줄의 데이터 (H:On L:Off)

** 0x8006, 0x8004 의 Integer Pointer 를 사용하여 하위 10bit 를 사용하여 프로그래밍 할 수 있습니다.

♦ LED

LED 출력 메모리 번지 : 0x8008 (Write 전용)

7	6	5	4	3	2	1	0
Data[7]	Data[6]	Data[5]	Data[4]	Data[3]	Data[2]	Data[1]	Data[0]

Data[n] n번째 LED 출력 (H:On L:Off)

◆ 스테핑 모터

스테핑 모터 출력 메모리 번지 : 0x8009 (Write 전용)

7	6	5	4	3	2	1	0
왼쪽	왼쪽	왼쪽	왼쪽	오른쪽	오른쪽	오른쪽	오른쪽
А	В	/A	/ B	А	В	/A	/ B

Bit[7,6,5,4] 왼쪽 스테핑 모터 (A, B, /A, /B)

Bit[3,2,1,0] 오른쪽 스테핑 모터 (A, B, /A, /B)

◆ DC 모터

DC 모터 출력 메모리 번지 : 0x800A(Write 전용)

7	6	5	4	3	2	1	0
		왼쪽	왼쪽			오른쪽	오른쪽
		А	В			А	В

Bit[5,4] 왼쪽 DC 모터 구동 [A, B]

◆ 서보모터

서보 모터 출력 메모리 번지 : 0x800B (Write 전용)

7	6	5	4	3	2	1	0		
Data[7]	Data[6]	Data[5]	Data[4]	Data[3]	Data[2]	Data[1]	Data[0]		
Data[n] n 번째 서보모터 출력 신호. X ms – x ms PWM 신호									

◆ S/W 입력

스위치 입력 포트 (메모리 번지 :0x36)

7	6	5	4	3	2	1	0
PINB7	PINB6	PINB5	PINB4	PINB3	PINB2	PINB1	PINB0
(Select)	(ESC)		(Up)	(Down)	(Left)		(Right)

DDRB 를 입력모드로 셋팅 후 사용.

※ 트레이닝 키트 포트 정의	
#define LCD_DATA	(*(volatile unsigned char *)0x8000)
#define LCD_CONTROL	(*(volatile unsigned char *)0x8001)
#define SS_DATA	(*(volatile unsigned char *)0x8002)
#define SS_SEL	(*(volatile unsigned char *)0x8003)
#define DM_SEL	(*(volatile unsigned int *)0x8004)
#define DM_DATA	(*(volatile unsigned int *)0x8006)
#define EX_LED	(*(volatile unsigned char *)0x8008)
#define EX_MOTOR	(*(volatile unsigned char *)0x8009)
#define EX_DCMOTOR	(*(volatile unsigned char *)0x800A)
#define EX_SERVO	(*(volatile unsigned char *)0x800B)
#define PINB	(*(volatile unsigned char *)0x36)

Bit[1,0] 오른쪽 DC 모터 구동 [A, B]

2. KT-M128 활용

2.1 실습 구성

- 1 주차 보드 사용법, 컴파일러 사용법, 보드에 프로그램 다운로드 해보기
- 2 주차 MCU 이론 강의
- 3 주차 LED 켜기, 시리얼 통신(RS-232) 사용하기
- 4 주차 타이머 인터럽트 사용하기 (LED 켜기, 스피커로 소리 내기)
- 5 주차 S/W 입력 받기
 내부 장치 외부 장치 포인터 사용해서 동작시키기
 6 주차 ADC 사용하기
 - (온도센서, 조도센서, 적외선 센서, 가변저항)
- 7 주차 시리얼 통신 실습 (TX, RX 구현하기)
- 8 주차 7-Segment 사용하기
- 9 주차 Dot Matrix 사용하기
- **10 주차** Text LCD 사용하기
- 11 주차 RTC 사용하여 디지털 시계 만들기
- 12 주차 스피커로 음악 연주하기 S/W 와 스피커 연동 (피아노 만들기)
- 13 주차 스테핑 모터 구동하기
- 14 주차 라인트레이서 만들기
- 15 주차 개인별 프로젝트 진행

실습을 통하여 아래와 같은 장치들을 다룰 수 있습니다.

- 입출력
 - S/W 8ea, LED, RS-232 통신
- 센서
 - 온도, 조도, 적외선(거리), 가변저항
- Display
 - 7-segment, Text LCD, Dot Matrix
- 모터구동
 - 스테핑 모터, DC 모터, 서보모터
- 기타
 - 스피커(단음 멜로디 가능), RTC(내장 시계, I2C 방식)

2.2 프로젝트 구성

사용자는 KT-M128 트레이닝 키트를 이용하여 다양한 창의 작품 을 만들어 볼 수 있습니다.

- 라인트레이서 로봇 (KT-M128-LT)
 - 라인트레이서 센서보드의 적외선 센서 신호를 입력 받아 길을 감지하고 2개의 스테핑 모터를 구동하여 길을 따라 갈 수 있는 로봇
- 멜로디 저장이 가능한 건반
 - 8개의 스위치의 입력을 받아 스피커로 단음 멜로디를 내 보내며 멜로디를 내부 메모리에 저장한 후 다시 재생해 볼 수 있는 건반 제작
- 도트메트릭스 또는 Graphic LCD 를 이용한 게임 제작
 - S/W 의 배치를 전/후/좌/우 가 가능하도록 배치되어 지뢰 찾기, 테트리스 등 간단한 게임을 짤 수 있습니다.
- 온도, 조도센서와 모터, LED 를 이용한 창의 작품
 - 온도를 감지하여 높을 경우 모터를 돌려 온도를 낮추거나 어두울 때 LED 를 켜서 밝게 만들어 주는 창의 작품을 제작할 수 있습니다.

3. 프로그래밍 가이드

3.1 ICC AVR C 컴파일러의 특징

컴파일과 ISP 다운로드 기능 지원, 컴파일 후 자동 다운로드 기능 지원, Wind 기능으로 기편하게 추가 개지스다.

ICC-AVR 데모버전을 받을 수 있는 웹사이트

<u>http://www.imagecraft.com/software/</u> 에 들어가셔서 왼쪽 메뉴에 Demos/Upgrades 를 클릭하시면 됩니다.

3.2 프로그램 다운로드 방법

"AVR 강좌 - 1. 보드에 프로그램 다운로드 하기" 참고

ATMega128 내부에 퓨즈비트가 있어서 칩의 동작을 셋팅 할 수 있습니다. 키트에 포함되어 있는 ATMega128에는 셋팅이 되 어 있지만 ATMega128 을 따로 구매하실 경우 적당한 값으로 라이팅을 하셔야 합니다. 퓨즈비트 라이팅 하는 것은 ICC-AVR 프로그램으로 가능합니다. 라이팅 할 값은 "0xFFD9EF"입니다.

별매로 판매되는 ISP Cable 을 ISP 커넥터와 사용하시는 PC 프 린트포트에 연결하시고 ICC-AVR 을 사용하시면 자신이 프로그 램 한 것을 다운로드하여 동작 시켜보실 수 있습니다.

관련된 내용은 해당 강좌를 참고 하십시요.

4. Epilog

4.1 기술지원 홈페이지

http://www.NewTC.co.kr

기술지원 사이트에 AVR 강좌, 전자공학 강좌, 로봇 제작 강좌 등 여러 자료들이 업데이트 되고 있으며, 자료실에서는 각종 필요한 파일이나 어플리케이션 프로그램 등등을 업데이트 하고 있으니, 많은 참조 하시기 바랍니다.

제품에 관한 A/S나 문의 등 언제든 주저하지 마시고, 홈페이지의 Q&A란에 남겨 주시기 바랍니다.

개발 관련 문의는 E-mail (davidryu1@newtc.co.kr) 을 이용하여 주 시기 바랍니다.

감사합니다.